From 4e87195739f2a5d9a05451b48773c8afdc680765 Mon Sep 17 00:00:00 2001 From: akiyamn Date: Sun, 24 Sep 2023 23:22:21 +1000 Subject: Initial commit (by create-cloudflare CLI) --- .../capnp-ts/src/serialization/pointers/pointer.js | 795 +++++++++++++++++++++ 1 file changed, 795 insertions(+) create mode 100644 node_modules/capnp-ts/src/serialization/pointers/pointer.js (limited to 'node_modules/capnp-ts/src/serialization/pointers/pointer.js') diff --git a/node_modules/capnp-ts/src/serialization/pointers/pointer.js b/node_modules/capnp-ts/src/serialization/pointers/pointer.js new file mode 100644 index 0000000..711bfbc --- /dev/null +++ b/node_modules/capnp-ts/src/serialization/pointers/pointer.js @@ -0,0 +1,795 @@ +"use strict"; +/** + * @author jdiaz5513 + */ +Object.defineProperty(exports, "__esModule", { value: true }); +exports.trackPointerAllocation = exports.copyFromStruct = exports.copyFromList = exports.validate = exports.setStructPointer = exports.setListPointer = exports.setInterfacePointer = exports.setFarPointer = exports.relocateTo = exports.isNull = exports.isDoubleFar = exports.initPointer = exports.getTargetStructSize = exports.getTargetPointerType = exports.getTargetListLength = exports.getTargetListElementSize = exports.getTargetCompositeListSize = exports.getTargetCompositeListTag = exports.getStructSize = exports.getStructPointerLength = exports.getStructDataWords = exports.getPointerType = exports.getOffsetWords = exports.getListLength = exports.getListElementSize = exports.getFarSegmentId = exports.getContent = exports.getCapabilityId = exports.followFars = exports.followFar = exports.erasePointer = exports.erase = exports.copyFrom = exports.add = exports.getListElementByteLength = exports.getListByteLength = exports.dump = exports.disown = exports.adopt = exports.Pointer = void 0; +const tslib_1 = require("tslib"); +const debug_1 = tslib_1.__importDefault(require("debug")); +const constants_1 = require("../../constants"); +const util_1 = require("../../util"); +const list_element_size_1 = require("../list-element-size"); +const object_size_1 = require("../object-size"); +const orphan_1 = require("./orphan"); +const pointer_allocation_result_1 = require("./pointer-allocation-result"); +const pointer_type_1 = require("./pointer-type"); +const errors_1 = require("../../errors"); +const trace = debug_1.default("capnp:pointer"); +trace("load"); +/** + * A pointer referencing a single byte location in a segment. This is typically used for Cap'n Proto pointers, but is + * also sometimes used to reference an offset to a pointer's content or tag words. + * + * @export + * @class Pointer + */ +class Pointer { + constructor(segment, byteOffset, depthLimit = constants_1.MAX_DEPTH) { + this._capnp = { compositeList: false, depthLimit }; + this.segment = segment; + this.byteOffset = byteOffset; + if (depthLimit === 0) { + throw new Error(util_1.format(errors_1.PTR_DEPTH_LIMIT_EXCEEDED, this)); + } + // Make sure we keep track of all pointer allocations; there's a limit per message (prevent DoS). + trackPointerAllocation(segment.message, this); + // NOTE: It's okay to have a pointer to the end of the segment; you'll see this when creating pointers to the + // beginning of the content of a newly-allocated composite list with zero elements. Unlike other language + // implementations buffer over/underflows are not a big issue since all buffer access is bounds checked in native + // code anyway. + if (byteOffset < 0 || byteOffset > segment.byteLength) { + throw new Error(util_1.format(errors_1.PTR_OFFSET_OUT_OF_BOUNDS, byteOffset)); + } + trace("new %s", this); + } + toString() { + return util_1.format("Pointer_%d@%a,%s,limit:%x", this.segment.id, this.byteOffset, dump(this), this._capnp.depthLimit); + } +} +exports.Pointer = Pointer; +Pointer.adopt = adopt; +Pointer.copyFrom = copyFrom; +Pointer.disown = disown; +Pointer.dump = dump; +Pointer.isNull = isNull; +Pointer._capnp = { + displayName: "Pointer", +}; +/** + * Adopt an orphaned pointer, making the pointer point to the orphaned content without copying it. + * + * @param {Orphan} src The orphan to adopt. + * @param {Pointer} p The the pointer to adopt into. + * @returns {void} + */ +function adopt(src, p) { + src._moveTo(p); +} +exports.adopt = adopt; +/** + * Convert a pointer to an Orphan, zeroing out the pointer and leaving its content untouched. If the content is no + * longer needed, call `disown()` on the orphaned pointer to erase the contents as well. + * + * Call `adopt()` on the orphan with the new target pointer location to move it back into the message; the orphan + * object is then invalidated after adoption (can only adopt once!). + * + * @param {T} p The pointer to turn into an Orphan. + * @returns {Orphan} An orphaned pointer. + */ +function disown(p) { + return new orphan_1.Orphan(p); +} +exports.disown = disown; +function dump(p) { + return util_1.bufferToHex(p.segment.buffer.slice(p.byteOffset, p.byteOffset + 8)); +} +exports.dump = dump; +/** + * Get the total number of bytes required to hold a list of the provided size with the given length, rounded up to the + * nearest word. + * + * @param {ListElementSize} elementSize A number describing the size of the list elements. + * @param {number} length The length of the list. + * @param {ObjectSize} [compositeSize] The size of each element in a composite list; required if + * `elementSize === ListElementSize.COMPOSITE`. + * @returns {number} The number of bytes required to hold an element of that size, or `NaN` if that is undefined. + */ +function getListByteLength(elementSize, length, compositeSize) { + switch (elementSize) { + case list_element_size_1.ListElementSize.BIT: + return util_1.padToWord((length + 7) >>> 3); + case list_element_size_1.ListElementSize.BYTE: + case list_element_size_1.ListElementSize.BYTE_2: + case list_element_size_1.ListElementSize.BYTE_4: + case list_element_size_1.ListElementSize.BYTE_8: + case list_element_size_1.ListElementSize.POINTER: + case list_element_size_1.ListElementSize.VOID: + return util_1.padToWord(getListElementByteLength(elementSize) * length); + /* istanbul ignore next */ + case list_element_size_1.ListElementSize.COMPOSITE: + if (compositeSize === undefined) { + throw new Error(util_1.format(errors_1.PTR_INVALID_LIST_SIZE, NaN)); + } + return length * util_1.padToWord(object_size_1.getByteLength(compositeSize)); + /* istanbul ignore next */ + default: + throw new Error(errors_1.PTR_INVALID_LIST_SIZE); + } +} +exports.getListByteLength = getListByteLength; +/** + * Get the number of bytes required to hold a list element of the provided size. `COMPOSITE` elements do not have a + * fixed size, and `BIT` elements are packed into exactly a single bit, so these both return `NaN`. + * + * @param {ListElementSize} elementSize A number describing the size of the list elements. + * @returns {number} The number of bytes required to hold an element of that size, or `NaN` if that is undefined. + */ +function getListElementByteLength(elementSize) { + switch (elementSize) { + /* istanbul ignore next */ + case list_element_size_1.ListElementSize.BIT: + return NaN; + case list_element_size_1.ListElementSize.BYTE: + return 1; + case list_element_size_1.ListElementSize.BYTE_2: + return 2; + case list_element_size_1.ListElementSize.BYTE_4: + return 4; + case list_element_size_1.ListElementSize.BYTE_8: + case list_element_size_1.ListElementSize.POINTER: + return 8; + /* istanbul ignore next */ + case list_element_size_1.ListElementSize.COMPOSITE: + // Caller has to figure it out based on the tag word. + return NaN; + /* istanbul ignore next */ + case list_element_size_1.ListElementSize.VOID: + return 0; + /* istanbul ignore next */ + default: + throw new Error(util_1.format(errors_1.PTR_INVALID_LIST_SIZE, elementSize)); + } +} +exports.getListElementByteLength = getListElementByteLength; +/** + * Add an offset to the pointer's offset and return a new Pointer for that address. + * + * @param {number} offset The number of bytes to add to the offset. + * @param {Pointer} p The pointer to add from. + * @returns {Pointer} A new pointer to the address. + */ +function add(offset, p) { + return new Pointer(p.segment, p.byteOffset + offset, p._capnp.depthLimit); +} +exports.add = add; +/** + * Replace a pointer with a deep copy of the pointer at `src` and all of its contents. + * + * @param {Pointer} src The pointer to copy. + * @param {Pointer} p The pointer to copy into. + * @returns {void} + */ +function copyFrom(src, p) { + // If the pointer is the same then this is a noop. + if (p.segment === src.segment && p.byteOffset === src.byteOffset) { + trace("ignoring copy operation from identical pointer %s", src); + return; + } + // Make sure we erase this pointer's contents before moving on. If src is null, that's all we do. + erase(p); // noop if null + if (isNull(src)) + return; + switch (getTargetPointerType(src)) { + case pointer_type_1.PointerType.STRUCT: + copyFromStruct(src, p); + break; + case pointer_type_1.PointerType.LIST: + copyFromList(src, p); + break; + /* istanbul ignore next */ + default: + throw new Error(util_1.format(errors_1.PTR_INVALID_POINTER_TYPE, getTargetPointerType(p))); + } +} +exports.copyFrom = copyFrom; +/** + * Recursively erase a pointer, any far pointers/landing pads/tag words, and the content it points to. + * + * Note that this will leave "holes" of zeroes in the message, since the space cannot be reclaimed. With packing this + * will have a negligible effect on the final message size. + * + * FIXME: This may need protection against infinite recursion... + * + * @param {Pointer} p The pointer to erase. + * @returns {void} + */ +function erase(p) { + if (isNull(p)) + return; + // First deal with the contents. + let c; + switch (getTargetPointerType(p)) { + case pointer_type_1.PointerType.STRUCT: { + const size = getTargetStructSize(p); + c = getContent(p); + // Wipe the data section. + c.segment.fillZeroWords(c.byteOffset, size.dataByteLength / 8); + // Iterate over all the pointers and nuke them. + for (let i = 0; i < size.pointerLength; i++) { + erase(add(i * 8, c)); + } + break; + } + case pointer_type_1.PointerType.LIST: { + const elementSize = getTargetListElementSize(p); + const length = getTargetListLength(p); + let contentWords = util_1.padToWord(length * getListElementByteLength(elementSize)); + c = getContent(p); + if (elementSize === list_element_size_1.ListElementSize.POINTER) { + for (let i = 0; i < length; i++) { + erase(new Pointer(c.segment, c.byteOffset + i * 8, p._capnp.depthLimit - 1)); + } + // Calling erase on each pointer takes care of the content, nothing left to do here. + break; + } + else if (elementSize === list_element_size_1.ListElementSize.COMPOSITE) { + // Read some stuff from the tag word. + const tag = add(-8, c); + const compositeSize = getStructSize(tag); + const compositeByteLength = object_size_1.getByteLength(compositeSize); + contentWords = getOffsetWords(tag); + // Kill the tag word. + c.segment.setWordZero(c.byteOffset - 8); + // Recursively erase each pointer. + for (let i = 0; i < length; i++) { + for (let j = 0; j < compositeSize.pointerLength; j++) { + erase(new Pointer(c.segment, c.byteOffset + i * compositeByteLength + j * 8, p._capnp.depthLimit - 1)); + } + } + } + c.segment.fillZeroWords(c.byteOffset, contentWords); + break; + } + case pointer_type_1.PointerType.OTHER: + // No content. + break; + default: + throw new Error(util_1.format(errors_1.PTR_INVALID_POINTER_TYPE, getTargetPointerType(p))); + } + erasePointer(p); +} +exports.erase = erase; +/** + * Set the pointer (and far pointer landing pads, if applicable) to zero. Does not touch the pointer's content. + * + * @param {Pointer} p The pointer to erase. + * @returns {void} + */ +function erasePointer(p) { + if (getPointerType(p) === pointer_type_1.PointerType.FAR) { + const landingPad = followFar(p); + if (isDoubleFar(p)) { + // Kill the double-far tag word. + landingPad.segment.setWordZero(landingPad.byteOffset + 8); + } + // Kill the landing pad. + landingPad.segment.setWordZero(landingPad.byteOffset); + } + // Finally! Kill the pointer itself... + p.segment.setWordZero(p.byteOffset); +} +exports.erasePointer = erasePointer; +/** + * Interpret the pointer as a far pointer, returning its target segment and offset. + * + * @param {Pointer} p The pointer to read from. + * @returns {Pointer} A pointer to the far target. + */ +function followFar(p) { + const targetSegment = p.segment.message.getSegment(p.segment.getUint32(p.byteOffset + 4)); + const targetWordOffset = p.segment.getUint32(p.byteOffset) >>> 3; + return new Pointer(targetSegment, targetWordOffset * 8, p._capnp.depthLimit - 1); +} +exports.followFar = followFar; +/** + * If the pointer address references a far pointer, follow it to the location where the actual pointer data is written. + * Otherwise, returns the pointer unmodified. + * + * @param {Pointer} p The pointer to read from. + * @returns {Pointer} A new pointer representing the target location, or `p` if it is not a far pointer. + */ +function followFars(p) { + if (getPointerType(p) === pointer_type_1.PointerType.FAR) { + const landingPad = followFar(p); + if (isDoubleFar(p)) + landingPad.byteOffset += 8; + return landingPad; + } + return p; +} +exports.followFars = followFars; +function getCapabilityId(p) { + return p.segment.getUint32(p.byteOffset + 4); +} +exports.getCapabilityId = getCapabilityId; +function isCompositeList(p) { + return getTargetPointerType(p) === pointer_type_1.PointerType.LIST && getTargetListElementSize(p) === list_element_size_1.ListElementSize.COMPOSITE; +} +/** + * Obtain the location of the pointer's content, following far pointers as needed. + * If the pointer is a struct pointer and `compositeIndex` is set, it will be offset by a multiple of the struct's size. + * + * @param {Pointer} p The pointer to read from. + * @param {boolean} [ignoreCompositeIndex] If true, will not follow the composite struct pointer's composite index and + * instead return a pointer to the parent list's contents (also the beginning of the first struct). + * @returns {Pointer} A pointer to the beginning of the pointer's content. + */ +function getContent(p, ignoreCompositeIndex) { + let c; + if (isDoubleFar(p)) { + const landingPad = followFar(p); + c = new Pointer(p.segment.message.getSegment(getFarSegmentId(landingPad)), getOffsetWords(landingPad) * 8); + } + else { + const target = followFars(p); + c = new Pointer(target.segment, target.byteOffset + 8 + getOffsetWords(target) * 8); + } + if (isCompositeList(p)) + c.byteOffset += 8; + if (!ignoreCompositeIndex && p._capnp.compositeIndex !== undefined) { + // Seek backwards by one word so we can read the struct size off the tag word. + c.byteOffset -= 8; + // Seek ahead by `compositeIndex` multiples of the struct's total size. + c.byteOffset += 8 + p._capnp.compositeIndex * object_size_1.getByteLength(object_size_1.padToWord(getStructSize(c))); + } + return c; +} +exports.getContent = getContent; +/** + * Read the target segment ID from a far pointer. + * + * @param {Pointer} p The pointer to read from. + * @returns {number} The target segment ID. + */ +function getFarSegmentId(p) { + return p.segment.getUint32(p.byteOffset + 4); +} +exports.getFarSegmentId = getFarSegmentId; +/** + * Get a number indicating the size of the list's elements. + * + * @param {Pointer} p The pointer to read from. + * @returns {ListElementSize} The size of the list's elements. + */ +function getListElementSize(p) { + return p.segment.getUint32(p.byteOffset + 4) & constants_1.LIST_SIZE_MASK; +} +exports.getListElementSize = getListElementSize; +/** + * Get the number of elements in a list pointer. For composite lists, it instead represents the total number of words in + * the list (not counting the tag word). + * + * This method does **not** attempt to distinguish between composite and non-composite lists. To get the correct + * length for composite lists use `getTargetListLength()` instead. + * + * @param {Pointer} p The pointer to read from. + * @returns {number} The length of the list, or total number of words for composite lists. + */ +function getListLength(p) { + return p.segment.getUint32(p.byteOffset + 4) >>> 3; +} +exports.getListLength = getListLength; +/** + * Get the offset (in words) from the end of a pointer to the start of its content. For struct pointers, this is the + * beginning of the data section, and for list pointers it is the location of the first element. The value should + * always be zero for interface pointers. + * + * @param {Pointer} p The pointer to read from. + * @returns {number} The offset, in words, from the end of the pointer to the start of the data section. + */ +function getOffsetWords(p) { + const o = p.segment.getInt32(p.byteOffset); + // Far pointers only have 29 offset bits. + return o & 2 ? o >> 3 : o >> 2; +} +exports.getOffsetWords = getOffsetWords; +/** + * Look up the pointer's type. + * + * @param {Pointer} p The pointer to read from. + * @returns {PointerType} The type of pointer. + */ +function getPointerType(p) { + return p.segment.getUint32(p.byteOffset) & constants_1.POINTER_TYPE_MASK; +} +exports.getPointerType = getPointerType; +/** + * Read the number of data words from this struct pointer. + * + * @param {Pointer} p The pointer to read from. + * @returns {number} The number of data words in the struct. + */ +function getStructDataWords(p) { + return p.segment.getUint16(p.byteOffset + 4); +} +exports.getStructDataWords = getStructDataWords; +/** + * Read the number of pointers contained in this struct pointer. + * + * @param {Pointer} p The pointer to read from. + * @returns {number} The number of pointers in this struct. + */ +function getStructPointerLength(p) { + return p.segment.getUint16(p.byteOffset + 6); +} +exports.getStructPointerLength = getStructPointerLength; +/** + * Get an object describing this struct pointer's size. + * + * @param {Pointer} p The pointer to read from. + * @returns {ObjectSize} The size of the struct. + */ +function getStructSize(p) { + return new object_size_1.ObjectSize(getStructDataWords(p) * 8, getStructPointerLength(p)); +} +exports.getStructSize = getStructSize; +/** + * Get a pointer to this pointer's composite list tag word, following far pointers as needed. + * + * @param {Pointer} p The pointer to read from. + * @returns {Pointer} A pointer to the list's composite tag word. + */ +function getTargetCompositeListTag(p) { + const c = getContent(p); + // The composite list tag is always one word before the content. + c.byteOffset -= 8; + return c; +} +exports.getTargetCompositeListTag = getTargetCompositeListTag; +/** + * Get the object size for the target composite list, following far pointers as needed. + * + * @param {Pointer} p The pointer to read from. + * @returns {ObjectSize} An object describing the size of each struct in the list. + */ +function getTargetCompositeListSize(p) { + return getStructSize(getTargetCompositeListTag(p)); +} +exports.getTargetCompositeListSize = getTargetCompositeListSize; +/** + * Get the size of the list elements referenced by this pointer, following far pointers if necessary. + * + * @param {Pointer} p The pointer to read from. + * @returns {ListElementSize} The size of the elements in the list. + */ +function getTargetListElementSize(p) { + return getListElementSize(followFars(p)); +} +exports.getTargetListElementSize = getTargetListElementSize; +/** + * Get the length of the list referenced by this pointer, following far pointers if necessary. If the list is a + * composite list, it will look up the tag word and read the length from there. + * + * @param {Pointer} p The pointer to read from. + * @returns {number} The number of elements in the list. + */ +function getTargetListLength(p) { + const t = followFars(p); + if (getListElementSize(t) === list_element_size_1.ListElementSize.COMPOSITE) { + // The content is prefixed by a tag word; it's a struct pointer whose offset contains the list's length. + return getOffsetWords(getTargetCompositeListTag(p)); + } + return getListLength(t); +} +exports.getTargetListLength = getTargetListLength; +/** + * Get the type of a pointer, following far pointers if necessary. For non-far pointers this is equivalent to calling + * `getPointerType()`. + * + * The target of a far pointer can never be another far pointer, and this method will throw if such a situation is + * encountered. + * + * @param {Pointer} p The pointer to read from. + * @returns {PointerType} The type of pointer referenced by this pointer. + */ +function getTargetPointerType(p) { + const t = getPointerType(followFars(p)); + if (t === pointer_type_1.PointerType.FAR) + throw new Error(util_1.format(errors_1.PTR_INVALID_FAR_TARGET, p)); + return t; +} +exports.getTargetPointerType = getTargetPointerType; +/** + * Get the size of the struct referenced by a pointer, following far pointers if necessary. + * + * @param {Pointer} p The poiner to read from. + * @returns {ObjectSize} The size of the struct referenced by this pointer. + */ +function getTargetStructSize(p) { + return getStructSize(followFars(p)); +} +exports.getTargetStructSize = getTargetStructSize; +/** + * Initialize a pointer to point at the data in the content segment. If the content segment is not the same as the + * pointer's segment, this will allocate and write far pointers as needed. Nothing is written otherwise. + * + * The return value includes a pointer to write the pointer's actual data to (the eventual far target), and the offset + * value (in words) to use for that pointer. In the case of double-far pointers this offset will always be zero. + * + * @param {Segment} contentSegment The segment containing this pointer's content. + * @param {number} contentOffset The offset within the content segment for the beginning of this pointer's content. + * @param {Pointer} p The pointer to initialize. + * @returns {PointerAllocationResult} An object containing a pointer (where the pointer data should be written), and + * the value to use as the offset for that pointer. + */ +function initPointer(contentSegment, contentOffset, p) { + if (p.segment !== contentSegment) { + // Need a far pointer. + trace("Initializing far pointer %s -> %s.", p, contentSegment); + if (!contentSegment.hasCapacity(8)) { + // GAH! Not enough space in the content segment for a landing pad so we need a double far pointer. + const landingPad = p.segment.allocate(16); + trace("GAH! Initializing double-far pointer in %s from %s -> %s.", p, contentSegment, landingPad); + setFarPointer(true, landingPad.byteOffset / 8, landingPad.segment.id, p); + setFarPointer(false, contentOffset / 8, contentSegment.id, landingPad); + landingPad.byteOffset += 8; + return new pointer_allocation_result_1.PointerAllocationResult(landingPad, 0); + } + // Allocate a far pointer landing pad in the target segment. + const landingPad = contentSegment.allocate(8); + if (landingPad.segment.id !== contentSegment.id) { + throw new Error(errors_1.INVARIANT_UNREACHABLE_CODE); + } + setFarPointer(false, landingPad.byteOffset / 8, landingPad.segment.id, p); + return new pointer_allocation_result_1.PointerAllocationResult(landingPad, (contentOffset - landingPad.byteOffset - 8) / 8); + } + trace("Initializing intra-segment pointer %s -> %a.", p, contentOffset); + return new pointer_allocation_result_1.PointerAllocationResult(p, (contentOffset - p.byteOffset - 8) / 8); +} +exports.initPointer = initPointer; +/** + * Check if the pointer is a double-far pointer. + * + * @param {Pointer} p The pointer to read from. + * @returns {boolean} `true` if it is a double-far pointer, `false` otherwise. + */ +function isDoubleFar(p) { + return getPointerType(p) === pointer_type_1.PointerType.FAR && (p.segment.getUint32(p.byteOffset) & constants_1.POINTER_DOUBLE_FAR_MASK) !== 0; +} +exports.isDoubleFar = isDoubleFar; +/** + * Quickly check to see if the pointer is "null". A "null" pointer is a zero word, equivalent to an empty struct + * pointer. + * + * @param {Pointer} p The pointer to read from. + * @returns {boolean} `true` if the pointer is "null". + */ +function isNull(p) { + return p.segment.isWordZero(p.byteOffset); +} +exports.isNull = isNull; +/** + * Relocate a pointer to the given destination, ensuring that it points to the same content. This will create far + * pointers as needed if the content is in a different segment than the destination. After the relocation the source + * pointer will be erased and is no longer valid. + * + * @param {Pointer} dst The desired location for the `src` pointer. Any existing contents will be erased before + * relocating! + * @param {Pointer} src The pointer to relocate. + * @returns {void} + */ +function relocateTo(dst, src) { + const t = followFars(src); + const lo = t.segment.getUint8(t.byteOffset) & 0x03; // discard the offset + const hi = t.segment.getUint32(t.byteOffset + 4); + // Make sure anything dst was pointing to is wiped out. + erase(dst); + const res = initPointer(t.segment, t.byteOffset + 8 + getOffsetWords(t) * 8, dst); + // Keep the low 2 bits and write the new offset. + res.pointer.segment.setUint32(res.pointer.byteOffset, lo | (res.offsetWords << 2)); + // Keep the high 32 bits intact. + res.pointer.segment.setUint32(res.pointer.byteOffset + 4, hi); + erasePointer(src); +} +exports.relocateTo = relocateTo; +/** + * Write a far pointer. + * + * @param {boolean} doubleFar Set to `true` if this is a double far pointer. + * @param {number} offsetWords The offset, in words, to the target pointer. + * @param {number} segmentId The segment the target pointer is located in. + * @param {Pointer} p The pointer to write to. + * @returns {void} + */ +function setFarPointer(doubleFar, offsetWords, segmentId, p) { + const A = pointer_type_1.PointerType.FAR; + const B = doubleFar ? 1 : 0; + const C = offsetWords; + const D = segmentId; + p.segment.setUint32(p.byteOffset, A | (B << 2) | (C << 3)); + p.segment.setUint32(p.byteOffset + 4, D); +} +exports.setFarPointer = setFarPointer; +/** + * Write a raw interface pointer. + * + * @param {number} capId The capability ID. + * @param {Pointer} p The pointer to write to. + * @returns {void} + */ +function setInterfacePointer(capId, p) { + p.segment.setUint32(p.byteOffset, pointer_type_1.PointerType.OTHER); + p.segment.setUint32(p.byteOffset + 4, capId); +} +exports.setInterfacePointer = setInterfacePointer; +/** + * Write a raw list pointer. + * + * @param {number} offsetWords The number of words from the end of this pointer to the beginning of the list content. + * @param {ListElementSize} size The size of each element in the list. + * @param {number} length The number of elements in the list. + * @param {Pointer} p The pointer to write to. + * @param {ObjectSize} [compositeSize] For composite lists this describes the size of each element in this list. This + * is required for composite lists. + * @returns {void} + */ +function setListPointer(offsetWords, size, length, p, compositeSize) { + const A = pointer_type_1.PointerType.LIST; + const B = offsetWords; + const C = size; + let D = length; + if (size === list_element_size_1.ListElementSize.COMPOSITE) { + if (compositeSize === undefined) { + throw new TypeError(errors_1.TYPE_COMPOSITE_SIZE_UNDEFINED); + } + D *= object_size_1.getWordLength(compositeSize); + } + p.segment.setUint32(p.byteOffset, A | (B << 2)); + p.segment.setUint32(p.byteOffset + 4, C | (D << 3)); +} +exports.setListPointer = setListPointer; +/** + * Write a raw struct pointer. + * + * @param {number} offsetWords The number of words from the end of this pointer to the beginning of the struct's data + * section. + * @param {ObjectSize} size An object describing the size of the struct. + * @param {Pointer} p The pointer to write to. + * @returns {void} + */ +function setStructPointer(offsetWords, size, p) { + const A = pointer_type_1.PointerType.STRUCT; + const B = offsetWords; + const C = object_size_1.getDataWordLength(size); + const D = size.pointerLength; + p.segment.setUint32(p.byteOffset, A | (B << 2)); + p.segment.setUint16(p.byteOffset + 4, C); + p.segment.setUint16(p.byteOffset + 6, D); +} +exports.setStructPointer = setStructPointer; +/** + * Read some bits off a pointer to make sure it has the right pointer data. + * + * @param {PointerType} pointerType The expected pointer type. + * @param {Pointer} p The pointer to validate. + * @param {ListElementSize} [elementSize] For list pointers, the expected element size. Leave this + * undefined for struct pointers. + * @returns {void} + */ +function validate(pointerType, p, elementSize) { + if (isNull(p)) + return; + const t = followFars(p); + // Check the pointer type. + const A = t.segment.getUint32(t.byteOffset) & constants_1.POINTER_TYPE_MASK; + if (A !== pointerType) { + throw new Error(util_1.format(errors_1.PTR_WRONG_POINTER_TYPE, p, pointerType)); + } + // Check the list element size, if provided. + if (elementSize !== undefined) { + const C = t.segment.getUint32(t.byteOffset + 4) & constants_1.LIST_SIZE_MASK; + if (C !== elementSize) { + throw new Error(util_1.format(errors_1.PTR_WRONG_LIST_TYPE, p, list_element_size_1.ListElementSize[elementSize])); + } + } +} +exports.validate = validate; +function copyFromList(src, dst) { + if (dst._capnp.depthLimit <= 0) + throw new Error(errors_1.PTR_DEPTH_LIMIT_EXCEEDED); + const srcContent = getContent(src); + const srcElementSize = getTargetListElementSize(src); + const srcLength = getTargetListLength(src); + let srcCompositeSize; + let srcStructByteLength; + let dstContent; + if (srcElementSize === list_element_size_1.ListElementSize.POINTER) { + dstContent = dst.segment.allocate(srcLength << 3); + // Recursively copy each pointer in the list. + for (let i = 0; i < srcLength; i++) { + const srcPtr = new Pointer(srcContent.segment, srcContent.byteOffset + (i << 3), src._capnp.depthLimit - 1); + const dstPtr = new Pointer(dstContent.segment, dstContent.byteOffset + (i << 3), dst._capnp.depthLimit - 1); + copyFrom(srcPtr, dstPtr); + } + } + else if (srcElementSize === list_element_size_1.ListElementSize.COMPOSITE) { + srcCompositeSize = object_size_1.padToWord(getTargetCompositeListSize(src)); + srcStructByteLength = object_size_1.getByteLength(srcCompositeSize); + dstContent = dst.segment.allocate(object_size_1.getByteLength(srcCompositeSize) * srcLength + 8); + // Copy the tag word. + dstContent.segment.copyWord(dstContent.byteOffset, srcContent.segment, srcContent.byteOffset - 8); + // Copy the entire contents, including all pointers. This should be more efficient than making `srcLength` + // copies to skip the pointer sections, and we're about to rewrite all those pointers anyway. + // PERF: Skip this step if the composite struct only contains pointers. + if (srcCompositeSize.dataByteLength > 0) { + const wordLength = object_size_1.getWordLength(srcCompositeSize) * srcLength; + dstContent.segment.copyWords(dstContent.byteOffset + 8, srcContent.segment, srcContent.byteOffset, wordLength); + } + // Recursively copy all the pointers in each struct. + for (let i = 0; i < srcLength; i++) { + for (let j = 0; j < srcCompositeSize.pointerLength; j++) { + const offset = i * srcStructByteLength + srcCompositeSize.dataByteLength + (j << 3); + const srcPtr = new Pointer(srcContent.segment, srcContent.byteOffset + offset, src._capnp.depthLimit - 1); + const dstPtr = new Pointer(dstContent.segment, dstContent.byteOffset + offset + 8, dst._capnp.depthLimit - 1); + copyFrom(srcPtr, dstPtr); + } + } + } + else { + const byteLength = util_1.padToWord(srcElementSize === list_element_size_1.ListElementSize.BIT + ? (srcLength + 7) >>> 3 + : getListElementByteLength(srcElementSize) * srcLength); + const wordLength = byteLength >>> 3; + dstContent = dst.segment.allocate(byteLength); + // Copy all of the list contents word-by-word. + dstContent.segment.copyWords(dstContent.byteOffset, srcContent.segment, srcContent.byteOffset, wordLength); + } + // Initialize the list pointer. + const res = initPointer(dstContent.segment, dstContent.byteOffset, dst); + setListPointer(res.offsetWords, srcElementSize, srcLength, res.pointer, srcCompositeSize); +} +exports.copyFromList = copyFromList; +function copyFromStruct(src, dst) { + if (dst._capnp.depthLimit <= 0) + throw new Error(errors_1.PTR_DEPTH_LIMIT_EXCEEDED); + const srcContent = getContent(src); + const srcSize = getTargetStructSize(src); + const srcDataWordLength = object_size_1.getDataWordLength(srcSize); + // Allocate space for the destination content. + const dstContent = dst.segment.allocate(object_size_1.getByteLength(srcSize)); + // Copy the data section. + dstContent.segment.copyWords(dstContent.byteOffset, srcContent.segment, srcContent.byteOffset, srcDataWordLength); + // Copy the pointer section. + for (let i = 0; i < srcSize.pointerLength; i++) { + const offset = srcSize.dataByteLength + i * 8; + const srcPtr = new Pointer(srcContent.segment, srcContent.byteOffset + offset, src._capnp.depthLimit - 1); + const dstPtr = new Pointer(dstContent.segment, dstContent.byteOffset + offset, dst._capnp.depthLimit - 1); + copyFrom(srcPtr, dstPtr); + } + // Don't touch dst if it's already initialized as a composite list pointer. With composite struct pointers there's + // no pointer to copy here and we've already copied the contents. + if (dst._capnp.compositeList) + return; + // Initialize the struct pointer. + const res = initPointer(dstContent.segment, dstContent.byteOffset, dst); + setStructPointer(res.offsetWords, srcSize, res.pointer); +} +exports.copyFromStruct = copyFromStruct; +/** + * Track the allocation of a new Pointer object. + * + * This will decrement an internal counter tracking how many bytes have been traversed in the message so far. After + * a certain limit, this method will throw an error in order to prevent a certain class of DoS attacks. + * + * @param {Message} message The message the pointer belongs to. + * @param {Pointer} p The pointer being allocated. + * @returns {void} + */ +function trackPointerAllocation(message, p) { + message._capnp.traversalLimit -= 8; + if (message._capnp.traversalLimit <= 0) { + throw new Error(util_1.format(errors_1.PTR_TRAVERSAL_LIMIT_EXCEEDED, p)); + } +} +exports.trackPointerAllocation = trackPointerAllocation; +//# sourceMappingURL=pointer.js.map \ No newline at end of file -- cgit v1.2.3