aboutsummaryrefslogtreecommitdiff
path: root/ass3
diff options
context:
space:
mode:
authorakiyamn2021-05-23 15:50:50 +1000
committerakiyamn2021-05-23 15:50:50 +1000
commit8e3ceacb95db423becbab6b19c49cf87ee19a7bc (patch)
tree8ef6924802858aa7b06883961e97f2dddfb19cd2 /ass3
parent4aba625715d39f9b4f593cbf5a72db368c809eb3 (diff)
downloadfit3155-master.tar.gz
fit3155-master.zip
Ass 3, should be doneHEADmaster
Diffstat (limited to 'ass3')
-rw-r--r--ass3/q2/header.py29
-rw-r--r--ass3/q3/decoder_lzss.py26
2 files changed, 44 insertions, 11 deletions
diff --git a/ass3/q2/header.py b/ass3/q2/header.py
index a10b9a9..24964af 100644
--- a/ass3/q2/header.py
+++ b/ass3/q2/header.py
@@ -2,6 +2,7 @@ import heapq
import sys
+# Represents a node in the tree used to construct a Huffman code
class HuffNode:
def __init__(self, string, count):
self.string = string
@@ -19,6 +20,9 @@ class HuffNode:
new_node.height += 1 + max(self.height, other.height)
return new_node
+ # Used to determine a node's place in the heap
+ # Sorts based on number of occurrences first, height second.
+ # This allows for a shorter code word.
def __lt__(self, other):
if self.count == other.count:
return self.height < other.height
@@ -30,6 +34,7 @@ class HuffNode:
def num_children(self):
return (self.left is not None) + (self.right is not None)
+ # Apply a function to all child nodes via DFS search
def dfs_apply(self, func):
func(self)
if self.left is not None:
@@ -38,6 +43,7 @@ class HuffNode:
self.right.dfs_apply(func)
+# Counts the number of unique characters in a string and places them in a dictionary
def count_unique(string):
count = {}
for char in string:
@@ -48,24 +54,28 @@ def count_unique(string):
return count
+# Given a string, returns a dictionary mapping from a string to a binary code
def huffman(string):
count = count_unique(string)
alphabet = "".join(count.keys())
- nodes = [HuffNode(letter, count[letter]) for letter in alphabet]
- leaves = nodes[:]
+ nodes = [HuffNode(letter, count[letter]) for letter in alphabet] # Node for each letter
+ leaves = nodes[:] # Just the leaf nodes used later for extracting leaf Huffman codes
heapq.heapify(nodes)
+ # Keep linking nodes together until there is only one left
while len(nodes) > 1:
- first, second = heapq.heappop(nodes), heapq.heappop(nodes)
- new_node = first + second
- heapq.heappush(nodes, new_node)
+ first, second = heapq.heappop(nodes), heapq.heappop(nodes) # Pop two off the heap
+ new_node = first + second # Combine the nodes into a new, combined node. (Non-destructive)
+ heapq.heappush(nodes, new_node) # Add this new node to the heap
root = nodes[0]
- huffman_calculate(root)
- result = {}
+ huffman_calculate(root) # Calculate Huffman codes for the entire tree
+ result = {} # Combine results into a dictionary
for leaf in leaves:
result[leaf.string] = leaf.binary
return result
+# Calculates the Huffman codes of this node and all of its children recursively
+# Non-leaf nodes are calculated as intermediate values. Only the leaves are considered important
def huffman_calculate(node: HuffNode, bin_prefix=""):
if node.num_children() == 0:
node.binary = bin_prefix
@@ -74,6 +84,7 @@ def huffman_calculate(node: HuffNode, bin_prefix=""):
huffman_calculate(node.right, bin_prefix + "1")
+# Calculate the Elias omega code for a given positive integer
def elias(n):
assert n > 0
binary = bin(n)[2:]
@@ -84,6 +95,7 @@ def elias(n):
return result
+# Generate the binary header for a given string
def header(string):
huff_code = huffman(string)
alphabet_size = len(huff_code.keys())
@@ -95,12 +107,14 @@ def header(string):
return output
+# Read a file and return the contents
def read_file(filename):
with open(filename, "r") as file:
contents = file.read()
return contents
+# Write a given string to file
def write_file(filename, contents):
with open(filename, "w") as file:
file.write(contents)
@@ -111,5 +125,6 @@ def main():
string = read_file(sys.argv[1])
write_file("output_header.txt", header(string))
+
if __name__ == "__main__":
main()
diff --git a/ass3/q3/decoder_lzss.py b/ass3/q3/decoder_lzss.py
index 92bd011..19669eb 100644
--- a/ass3/q3/decoder_lzss.py
+++ b/ass3/q3/decoder_lzss.py
@@ -1,18 +1,24 @@
import sys
+# A class that represents a stream of binary from a message
+# This class adds the ability to extract various types of values relevant to decoding a message
+# When a portion of data is read, the stream is progressed forward the correct amount.
+# This allows for easy data reading and cleaner parsing/decompressing code
+# Inspired by scanf from C.
class Stream:
def __init__(self, string):
self.string = string
self.cursor = 0
+ # Read one Elias omega integer from the stream
def read_elias(self):
offset = self.cursor
if self.string[0 + offset] == "1":
self.cursor += 1
return 1
start, end = 1, 2
- while True:
+ while True: # Keep reading bits until a full Elias omega integer has been read
binary = self.string[start + offset:end + 1 + offset]
if binary[0] == "0":
chunk = int(f"1{binary[1:]}", 2) + 1
@@ -22,24 +28,29 @@ class Stream:
self.cursor += end + 1
return int(binary, 2)
+ # Read a given amount of raw binary from the stream
def read_binary(self, length):
blob = self.string[self.cursor:self.cursor + length]
self.cursor += length
return blob
+ # Read one (x bit) integer from the stream
def read_int(self, bits):
return int(self.read_binary(bits), 2)
+ # Read one character from the stream. (Defaults to 7 bits, i.e. a sub 128 ASCII character)
def read_char(self, bits=7):
return chr(self.read_int(bits))
+ # Read a single bit
def read_bit(self):
return self.read_binary(1)
+ # Read one Huffman coded character, given a decode table (i.e. a dict which maps binary -> char)
def read_huff_char(self, decode_table):
window_size = 1
window = self.string[self.cursor:self.cursor + window_size]
- while window not in decode_table:
+ while window not in decode_table: # Scan for a Huffman coded char of a growing size
if window_size >= len(self.string):
raise Exception("Went for too long looking for a Huffman char")
window_size += 1
@@ -47,14 +58,16 @@ class Stream:
self.cursor += window_size
return decode_table[window]
+ # Read one LZSS compressed tuple from the stream, given a decode table
def read_lzss_tuple(self, decode_table):
format_type = self.read_bit()
if format_type == "0":
- return 0, self.read_elias(), self.read_elias()
+ return 0, self.read_elias(), self.read_elias() # Type 0 tuple
else:
- return 1, self.read_huff_char(decode_table)
+ return 1, self.read_huff_char(decode_table) # Type 1 tuple
+# Parse a binary header and return the resulting Huffman code as a mapping from codeword to character
def parse_header(stream):
huff = {}
alphabet_size = stream.read_elias()
@@ -66,11 +79,13 @@ def parse_header(stream):
return huff
+# Turn the body of a message into a list of LZSS tuples
def parse_body_tuples(stream, decode_table):
num_tuples = stream.read_elias()
return [stream.read_lzss_tuple(decode_table) for _ in range(num_tuples)]
+# Decode a list of LZSS tuples, return the resulting string
def decode_lzss(tuples):
result = ""
for tup in tuples:
@@ -84,6 +99,7 @@ def decode_lzss(tuples):
return result
+# Given an entire binary message, return the decoded, decompressed data
def decode_message(raw_data):
stream = Stream(raw_data)
decode_table = parse_header(stream)
@@ -91,12 +107,14 @@ def decode_message(raw_data):
return decode_lzss(tuples)
+# Read a file and return the contents
def read_file(filename):
with open(filename, "r") as file:
contents = file.read()
return contents
+# Write a given string to file
def write_file(filename, contents):
with open(filename, "w") as file:
file.write(contents)