aboutsummaryrefslogtreecommitdiff
path: root/ass1/binary_boyermoore.py
blob: 9e00ed27f1ca1a0ca1ce1a9a1305e0e9defaa737 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# txt = "zzzzzzzzzabczzzzzzzzzz"
# pat = "abczzzabc"
# m = len(pat)
# n = len(txt)
# R = [[m for __ in range(m)] for _ in range(0, 26)]
# good_suffix = [0 for _ in range(0, m+1)]

import sys

def alpha_number(char):
    if char == "0" or char == "1":
        return int(char)
    return ord(char) - 97
    # return int(char)


def reverse(string):
    return string[::-1]


def compare(string, i, end):
    for j in range(end):
        if i+j == end or string[i+j] != string[j]:
            return j

def condense(binary, offset=0, size=2):
    out = ""
    for i in range(offset, len(binary)-offset, size):
        slice = binary[i:i+size]
        if len(slice) == size:
            out += chr(97 + int(slice, 2))
    return out



def gusfield(string):
    z = [0 for _ in string]
    z[0] = len(string)
    r = 0
    l = 0
    for i in range(1, len(string)):
        if i == 1:  # base case
            z[1] = compare(string, i, len(string))
            if z[1] > 0:
                r = z[1] + 1
                l = 1
        elif i > r: # Case 1
            z[i] = compare(string, i, len(string))
            if z[i] > 0:
                q = i + z[i]
                r = q - 1
                l = i
        elif i <= r:  # Case 2
            if z[i-l] < r-i:  # Case 2a
                z[i] = z[i-l]
            else:  # Case 2b
                q = compare(string, i, len(string))
                z[i] = q
                r = q
                l = i
    return z

def gen_jump_table(pat):
    m = len(pat)
    R = [[-1 for __ in range(m)] for _ in range(0, 256)]
    for j in range(m):
        for i in range(j+1):
            R[alpha_number(pat[i])][j] = i
    return R

def gen_z_suffix(pat):
    return reverse(gusfield(reverse(pat)))+[0]

# print(list(pat))
# print(R)
# print(Z)

def gen_good_suffix(pat, Z):
    m = len(pat)
    good_suffix = [0 for _ in range(0, m + 1)]
    for i in range(m):
        j = m - Z[i]
        good_suffix[j] = i+1
    return good_suffix

# print("g", good_suffix)

def gen_matched_prefix(pat):
    m = len(pat)
    matched_prefix = gusfield(pat)+[0]
    for i in range(m-1, -1, -1):
        matched_prefix[i] = max(matched_prefix[i], matched_prefix[i+1])
    return matched_prefix


def preprocess(pat):
    Z = gen_z_suffix(pat)
    good_suffix = gen_good_suffix(pat, Z)
    matched_prefix = gen_matched_prefix(pat)
    return good_suffix, matched_prefix



def boyer_moore(pat, txt):
    good_suffix, matched_prefix = preprocess(pat)
    m = len(pat)
    n = len(txt)
    j = 0
    occurrence = 0
    galils = 0
    comps = 0

    # print("="*15)
    # print(6*" " + txt)
    i = m-1
    galil = False
    start = None
    stop = None
    while j <= n-m:
        # print(f"{j=:02}  {' ' * j}", end="")
        # for x in range(len(pat)):
        #     if x == i:
        #         print(pat[x].upper(), end="")
        #     else:
        #         print(pat[x], end="")
        # print()
        match = pat[i] == txt[j+i]
        comps += 1
        if match:
            if galil and stop >= i > start:
                galils += 1
                assert start >= 0
                i = max(start-1, 0)
                galil = False
            if i == 0:
                good_suffix_shift = m - matched_prefix[1]
                j += good_suffix_shift
                occurrence += 1
                i = m-1
            else:
                i -= 1
        else:
            galil = False
            mp = False
            gs = False
            mismatched = txt[j + i]
            bad_char_shift = i - R[alpha_number(mismatched)][i]
            good_suffix_shift = 1
            if good_suffix[i+1] >= 0:
                good_suffix_shift = m - good_suffix[i+1]
                gs = True
                start = good_suffix[i+1] - m + i + 1
                stop = good_suffix[i+1]
            elif good_suffix[i+1] == 0:
                good_suffix_shift = m - matched_prefix[i+1]
                mp = True
                start = 0
                stop = matched_prefix[i + 1]
            best_shift = max(good_suffix_shift, bad_char_shift)
            j += best_shift
            galil = (mp or gs) and best_shift == good_suffix_shift
            i = m-1


    print(f"It found {occurrence} occurences.")
    print(f"Galil'd {galils} times.")
    # print(f"\n  {list(range(m))}")
    # print("" + str(list(map(int, pat))))
    # for i, a in enumerate(R):
    #     print(chr(i+97), a)
    # print(good_suffix)
    # print(matched_prefix)
    print(f"{comps} comparisons.")
    return comps, occurrence

def two_to_the(n):
    return 1 << n

def chunky_search(pat, txt, factor=2):
    occurrence = 0
    comps = 0
    for offset in range(two_to_the(factor-1)):
        padding = format(offset, f"0{factor-1}b") if len(pat) % factor else ""
        augmented_pat = f"{pat}{padding}"
        # print(padding)
        print(condense(format(two_to_the(factor)-1, f"0b"), 0, factor))
        c, o = boyer_moore(condense(augmented_pat, 0, factor), condense(txt, offset, factor))
        comps += c
        occurrence += o
    base_comps, base_occur = boyer_moore(pat, txt)
    print("*"*20)
    print(f"Chunky Optimisation: {occurrence} occurences in {comps} comparisons.")
    print(f"Normal: {base_occur} occurences in {base_comps} comparisons.")
    # assert base_occur == occurrence
    if base_comps > 0:
        print(f"{comps * 100 / base_comps:.3f}% of normal Boyer-Moore")
        print(f"{comps * 100 / 642096:.3f}% of their Boyer-Moore")

def read_args():
    with open(sys.argv[1], "r") as txt_file:
        txt = txt_file.read()
    with open(sys.argv[2], "r") as pat_file:
        pat = pat_file.read()
    return txt, pat

# boyer_moore(condense("01100010"), condense(a))
# boyer_moore(condense("01100011"), condense(a, offset=1))

def main():
    F = 2
    if len(sys.argv) < 3:
        print("Not enough arguments!")
    else:
        txt, pat = read_args()
        chunky_search(pat, txt, factor=F)

main()




# boyer_moore("111000110", "01110111010101110100101011101101111011111111111111100011001110111010101110100101011101101101110111010110111010010101110110110111011111011011")
# print(condense("1110000110"))
# print(condense("1110000110", offset=1))
# boyer_moore("111011011001110", "101010111010010101110111010101110100101011101101111011111111111101110111010101110100101011101101101110111010101110100101011101101101110111110110110011100000110101011101001010111011011011101100001010101110100101011101110101011101001010111011011011101110101011101001010111011011011101110101011101001010111011011011101100001101010111010010101110110110111011000010111011111011101110110101110110101101100000001011001010101010101110111110111011101101011101101011011000000010110010101010101000010111011111011101110110101110110101101100000001011001010101010100001011101111101110111011010111011010110110000000101100101010101010101011101001010111011011011101100001011101111101110111011010101110100101011101101101110110000101110111110101010111010010101110110110111011000010111011101010111010010101110110110111011000010111010101110100101011101101101010101110100101011101101101110110000101110111110111011101101011101101011011000000010110010101010101111011000010111011111011101110110101110110101101100000001011001010101010110111110111011101101011101101011011000000010110010101010101111011101110110101110110101101100000001011001010101010111101110110101110110101101100000001011001010101010110101110110101101100000001011001010101010110110111011000010101011101001010111011101010111010010101110110110111011101010111010010101110110110111011101010111010010101110110110111011000011010101110100101011101101101110110000101110111110111011101101011101101011011000000010110010101010101011101111101110111011010111011010110110000000101100101010101010000101110111110111011101101011101101011011000000010110010101010101000010111011111011101110110101110110101101100000001011001010101010101010111010010101110110110111011000010111011111011101110110101011101001010111011011011101100001011101111101010101110100101011101101101110110000101110111010101110100101011101101101110110000101110101011101001010111011011010101011101001010111011011011101100001011101111101110111011010111011010110110000000101100101010101011110110000101110111110111011101101011101101011011000000010110010101010101101111101110111011010111011010110110000000101100101010101011110111011101101011101101011011000000010110010101010101111011101101011101101011011000000010110010101010101101011101101011011000000010110010101010101101101110110000101110111110111011101101011101101011011000000010110010101010101101110111110111011101101011101101011011000000010110010101010101101110111110111011101101011101101011011000000010110010101010101011101111101110111011010111011010110110000000101100101010101010000101110111110111011101101011101101011011000000010110010101010101000010111011111011101110110101110110101101100000001011001010101010101010111101111111111111010010101110110110111011000010111011111011101110110101011101001010111011011011101100001011101111101010101110100101011101101101110110000101110111010101110100101011101101101110110000101110101011101001010111011011010101011101001010111011011011101100001011101111101110111011010111011010110110000000101100101010101011110110000101110111110111011101101011101101011011000000010110010101010101101111101110111011010111011010110110000000101100101010101011110111011101101011101101011011000000010110010101010101111011101101011101101011011000000010110010101010101101011101101011011000000010110010101010101101101110110000101110111110111011101101011101101011011000000010110010101010101")