1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
|
import sys
class OrderedDict(dict):
def __init__(self):
super().__init__()
self.first_letters = [None for _ in range(27)]
def __setitem__(self, key, value):
super().__setitem__(key, value)
try:
self.first_letters[self.rank(key)] = value
except IndexError:
raise IndexError(f"Could not add item of key '{key}' since it is out of range of the rank function.")
def __delitem__(self, key):
super().__delitem__(key)
self.first_letters[self.rank(key)] = None
def ordered_items(self):
return filter(lambda x: x is not None, self.first_letters)
@staticmethod
def rank(char):
# result = 26 if char == "$" else ord(char) - 97
result = 0 if char == "$" else ord(char) - 96
assert result in range(0, 27)
return result
class Node:
global_end = 0
num_splits = 0
all_nodes = []
string = ""
def __init__(self, start, end):
self.root = False
self.start = start
self.end = end
self.children = OrderedDict()
self.id = len(self.all_nodes)
self.suffix_index = self.id - self.num_splits - 1
self.all_nodes.append(self)
self.parent = None
self.link = None
def __str__(self):
link_str = "" if self.link is None else f" -> {self.link.id}"
if not self.root:
j, i = self.tuple()
return f"[{self.id}, {self.tuple()}, {self.string[j:i + 1]}{link_str}]"
return f"[{self.id} root{link_str}]"
def __repr__(self):
return f"[{self.id}]"
def print_tree(self, spaces=1):
print(f"{self}")
for edge in self.children:
print(f" " * spaces, end="")
self.get_child(edge).print_tree(spaces=spaces + 1)
def first_char(self):
return self.string[self.start]
def get_child(self, char):
if char in self.children:
return self.children[char]
return None
def add_child(self, child):
child.parent = self
self.children[child.first_char()] = child
return child
def remove_child(self, child):
self.children.pop(child.first_char())
@property
def end_index(self):
return self.tuple()[1]
def tuple(self):
if self.root:
raise Exception("Can't get substring of root.")
if self.end == "#":
return self.start, self.global_end
return self.start, self.end
@property
def edge_length(self):
if self.root:
return 0
else:
start, end = self.tuple()
return end - start + 1
def detach(self):
self.parent.remove_child(self)
self.parent = None
class Point:
def __init__(self, node, edge="", length=0):
assert isinstance(node, Node)
self.node = node
self.edge = edge
self.length = length
def __repr__(self):
return f"(Node {self.node.id}'s edge:'{self.edge}', {self.length} along.)"
def is_explicit(self): # a.k.a. is not on an edge
return self.edge == ""
def set_node(self, node):
self.node = node
self.edge = ""
self.length = 0
if not self.is_explicit():
print("WARNING: Node.set_node", file=sys.stderr)
@property
def edge_node(self) -> Node:
return self.node.get_child(self.edge)
def index_here(self):
if self.is_explicit():
return 0 if self.node.root else self.node.start
return self.edge_node.start + self.length - 1
def char_here(self):
return Node.string[self.index_here()]
def create_root():
assert len(Node.all_nodes) == 0
root = Node(None, None)
root.root = True
root.link = root
return root
def split_edge(split_point: Point):
assert not split_point.is_explicit()
edge = split_point.edge_node
original = edge.tuple()
edge.detach()
Node.num_splits += 1
mediator = Node(original[0], original[0] + split_point.length - 1)
mediator.suffix_index = None
edge.start = original[0] + split_point.length
assert edge.start <= edge.end_index
mediator.add_child(edge)
split_point.node.add_child(mediator)
return mediator
def pos(n: int):
return max(n, 0)
def do_phase(root: Node, active: Point, i, last_j, remainder):
root_point = Point(root)
Node.global_end += 1
did_rule_three = False
j = last_j + 1
node_just_created = None
while not did_rule_three and j <= i + 1:
curr_char = Node.string[i]
match = char_is_after(active, curr_char)
if match:
# print(3)
remainder += 1
if node_just_created is not None:
node_just_created.link = active.node
active = skip_count(1, active, i)
did_rule_three = True
else:
# print(2)
if not active.is_explicit():
mediator = split_edge(active)
mediator.add_child(Node(i, "#"))
if node_just_created is not None:
node_just_created.link = mediator
node_just_created = mediator
active.length -= 1
if active.length == 0:
active.set_node(active.node)
else:
active.node.add_child(Node(i, "#"))
if node_just_created is not None and node_just_created.link is None:
node_just_created.link = active.node
remainder = pos(remainder - 1)
active.set_node(active.node.link)
if remainder > 0:
active = skip_count(remainder, Point(root), i - remainder)
last_j = j
j += 1
print(active)
root.print_tree()
return active, remainder, last_j
def char_is_after(point: Point, char):
if point.is_explicit():
return char in point.node.children
else:
if point.length == point.edge_node.edge_length:
return Node.string[point.edge_node.start] == char
else: # If not at the end of an edge
# return Node.string[point.index_here() + point.length] == char
return Node.string[point.index_here() + 1] == char
def skip_count(num_chars, start_point: Point, index):
incoming_length = -1
existing_length = 0
head = start_point
chars_left = num_chars
char = ""
if not head.is_explicit():
incoming_length = head.edge_node.edge_length - head.length
if num_chars < incoming_length:
head.length += num_chars
return head
head.set_node(head.edge_node)
chars_left -= incoming_length
index += incoming_length
# Node.string[i] if head.node.root else Node.string[head.node.end_index + 1]
# assert head.node.end_index + 1 + chars_left < len(Node.string)
while chars_left > 0:
# assert head.node.end_index + 1 + chars_left < len(Node.string)
direction = Node.string[index]
next_node = head.node.get_child(direction)
if next_node is None:
raise Exception(f"Attempted to traverse char\n '{direction}' at point {head}. ({index=})")
incoming_length = next_node.edge_length
if chars_left < incoming_length:
break
chars_left -= incoming_length
index += incoming_length
head.set_node(next_node)
# direction = Node.string[index]
if chars_left > 0: # Landed on an edge
head.edge = Node.string[index]
head.length = chars_left
return head
def ukkonen(string):
string += "$"
Node.string = string
Node.global_end = 0
Node.num_splits = 0
Node.all_nodes.clear()
n = len(string)
remainder = 0
last_j = 1
root = create_root()
root.add_child(Node(0, "#"))
active = Point(root)
for i in range(1, n):
active, remainder, last_j = do_phase(root, active, i, last_j, remainder)
return root
if __name__ == "__main__":
# ukkonen("DEFDBEFFDDEFFFADEFFB")
ukkonen("abacabad")
print("done")
# ukkonen("abcbcbc$")
|